Question					Answer	Ма	arks
1(a)	1 Na ₂ S ₂ O ₃ 1 HC <i>l</i> 1 H ₂ O 1 H ₂ O	2 H ₂ O 2 H ₂ O 2 Na ₂ S ₂ O ₃ 2 HC <i>l</i>	3 HC <i>1</i> 3 Na ₂ S ₂ O ₃ 3 HC <i>1</i> 3 Na ₂ S ₂ O ₃	OR OR OR ;			1
(b)(i)	M1 volumes M2 time = 14	40 : 10 : 10; 4;				1 1	2
(b)(ii)	M1 more pai M2 increase	rticles per unit s the rate of co	volume/particle Ilisions/there a	es are clo ire more	ser together; collisions per unit time;	1 1	2
(c)	M1 particles M2 increasir M3 higher pr above the ac	gain more ene ng rate of collisi oportion of par ctivation energy	rgy and move ons/more collis ticles have suff /;	fast er ; sions per īcient en	unit time; ergy to react/collisions have sufficient energy to react/are	1 1 1	3

Question	Answer			
2(a)	 M1 substance that speeds up a reaction/increases rate; M2 unchanged (chemically) at the end/not used up/lowers activation energy/provides alternative pathway; 	1 1	2	
(b)	M1 too slow/slower; M2 lower yield/less product(s)/equilibrium shifts to left/equilibrium shifts in direction of reactants/backward reaction favoured/reverse reaction favoured;	1 1	2	
(c)	fa /increase rate;		1	
(d)	<pre>lo yield/less product(s)/equilibrium shifts to left/equilibrium shifts in direction of reactants/backward reaction favoured/reverse reaction favoured; OR higher cost/expensive; OR safety risks;</pre>		1	
(e)(i)	M1 breakdown of an ionic compound when molten or in aqueous solution; M2 (using) electricity/electric current/electrical energy;	1 1	2	
(e)(ii)	/graphite/platinum;		1	

Question	Answer	Mar	′ks
2(e)(iii)	$\begin{array}{rcl} 2{H}^{*} & + & 2e(\;) \; \rightarrow \; \; H_{2}; \\ \textbf{OR} \\ 2{H}_{3}{O}^{*} & + & 2e(\;) \; \rightarrow \; \; H_{2} + & 2{H}_{2}{O}; \end{array}$		1
(e)(iv)	cathode/negative electrode;		1
(e)(v)	M1 damp blue litmus paper; M2 bleaches/loses colour/turns white/turns colourless;	1	2
(f)	$2NaCl + 2H_2O \rightarrow 2NaOH + H_2 + Cl_2$ all formulae correct; balancing;		2
(g)	M1 chlorine: treating (drinking) water/treating water in swimming pools/kill bacteria in water/chlorination of water/ (manufacture of) paper products/plastics/PVC/dyes/textiles/medicines/antiseptics/insecticides/herbicides/ fungicides/solvents/paints/disinfectant/bleach/hydrochloric acid;	1	3
	M2 sodium hydroxide: drain cleaner/oven cleaner/extraction of aluminium/purification of bauxite/(manufacture of) biodiesel/paper/ soap/detergents/washing powder/textiles/dyes;	1	
	M3 <i>hydrogen</i> : fuel/rocket fuel/fuel cells/in welding/(manufacture of) ammonia/NH₃/margarine/methanol/hydrochloric acid/ refrigerants;	1	

Question	Answer	Marks
3(a)	 M1 (substance that) speeds up a reaction/increases the rate of a reaction; M2 any one from: unchanged (chemically at the end)/not used up; lowers activation energy; 	2
(b)(i)	at the start/initially/t = 0;	1
(b)(ii)	catalyst should be powdered/increase surface area (of catalyst)/decrease particle size (of catalyst); or increase temperature/heat/warm;	1
(c)(i)	(mol);	1
(c)(ii)	0.001 (mol);	1
(c)(iii)	(dm ³);	1
(c)(iv)	change/no effect;	1
(c)(v)	(dm ³);	1
(d)	s mass/amount of/moles/1.0 g of catalyst; same temperature; same volume and concentration of hydrogen peroxide/20 cm ³ of 0.1 mol/dm ³ of hydrogen peroxide or reactant;	3

Question	Answer		Guidance	
4(a) (ii)	⁺ or 'hydrogen ion(s)';		\mathbf{R} H ₂ or 'hydrogen'	
	it accepts electrons or takes electrons (from zinc atoms);	2	 A because it is reduced or because it decreases in oxidation number A it causes zinc to lose electrons 	
(b)(i)	zinc displaces copper or zinc more reactive than copper;		A copper less reactive than zinc I zinc reacts with copper ions or with Cu ²⁺ or with copper chloride I zinc reacts with copper I Cu ²⁺ ions are reduced	
	Zn + CuC l_2 → ZnC l_2 + Cu OR Zn + Cu ²⁺ → Cu + Zn ²⁺ ;	2	A multiples I state symbols	
(b)(ii)	steeper (line) or higher gradient; (means an) increased rate;		A less time to complete the reaction/same amount of gas in less time/faster reaction/ more gas in the same time period	
	but the same (final) volume;	3	 A same volume of hydrogen produced A 'amount' for volume A no extra gas is made 	
(c)	M1 less steep (line) or lower gradient;		A alternative phrases e.g. 'shallower'	
	M2 (because of) decreased rate;		A more time to complete the reactionA same amount of gas in more timeA slower rate or slower reaction	
	M3 ethanoic is a weak(er) acid;		ORA	
	M4 only partially ionised or dissociated OR lower concentration of hydrogen ions;	4	A not fully dissociated or ionised A ionises less (than HC <i>l</i>) I less hydrogen ions	

Question	Answer	Marks	Guidance
(d)	M1 moles of HC $l = 0.1 (mol);$		
	M2 moles of $Zn = 0.05 (mol);$		A ECF for M1 $\times \frac{1}{2}$
	mass of zinc = 3.25g;	3	A ECF for M2 × 65 Unit required for M3

5	(a (i)	rate decreases <u>concentration</u> of sodium chlorate ((I))/reactant decreases	[1] [1]
	(ii)	(initial) gradient greater/steeper (must start at origin) same final volume of oxygen	[1] [1]
	(iii)	(to prevent)photochemical reaction/(to prevent)reaction catalysed by light/light breaks down or decomposes sodium chlorate((I))	[
	(iv)	particles have more energy/particles move faster/ more collisions	[1] [1]
		rate increases/more particles have energy to react/more collisions are successful or effective	[1]
	(b)	2Cl \rightarrow Cl ₂ + 2e() / 2Cl $-$ 2e() \rightarrow Cl ₂	[1]
		$2H^{\ast}$ + 2e() \rightarrow H_{2} / $2H^{\ast}$ \rightarrow H_{2} – 2e()	[1]
		hydrogen formed at cathode/- and chlorine at anode/+	[1]
		<u>Na[⁺] and OH</u> or sodium <u>ions</u> and hydroxide <u>ions</u> left in solution/form/become sodium hydroxide	[1]
	(ii)	Cl_2 + 2NaOH \rightarrow NaClO/NaOCl + NaCl + H ₂ O Species (1) Balancing (1)	[2]
			[Total: 14]